1,032 research outputs found

    Tests of the Rockwell Si:As Back-Illuminated Blocked-Impurity Band (BIBIB) detectors

    Get PDF
    Two arrays of Rockwell's Si:As back-illuminated blocked-impurity-band detectors were tested at the Max-Planck-Institute for Astronomy (MPIA) at low background and low temperature for possible use in the astronomical space experiment ISOPHOT. For these measurements special test equipment was put together. A cryostat was mechanically modified to accommodate the arrays and special peripheral electronics was added to a microprocessor system to drive the cold multiplexer and to acquire the output data. The first device, a 16x50 element array on a fan-out board was used to test individual pixels with a trans-impedance-amplifier at a photon background of 10(exp 8) Ph s(-1)cm(-2) and at temperatures of 2.7 to 4.4 K. The noise-equivalent-power NEP is in the range 5 - 7 x 10(exp -18) WHz(exp -1/2), the responsivity is less than or equal to 100 AW(exp -1)(f = 10 Hz). The second device was a 10x50 array including a cold readout electronics of switched FETs (SWIFET). Measurements of this array were done in a background range of 5 x 10(exp 5) to 5 x 10(exp 11) Ph s(exp-1)cm(exp-2) and at operating temperatures between 3.0 and 4.8 K. The NEP ranges from less than 10(exp -18) at the lowest background to 2 x 10(exp -16) WHz(exp -1/2) at the highest flux

    Status of the isophot detector development

    Get PDF
    ISOPHOT is one of the four focal plane experiments of the European Space Agency's Infrared Space Observatory (ISO). Scheduled for a 1993 launch, it will operate extrinsic silicon and germanium photoconductors at low temperature and low background during the longer than 18 month mission. These detectors cover the wavelength range from 2.5 to 200 microns and are used as single elements and in arrays. A cryogenic preamplifier was developed to read out a total number of 223 detector pixels

    An analysis tool for collision avoidance manoeuvres using aerodynamic drag

    Full text link
    Aerodynamic collision avoidance manoeuvres provide an opportunity for satellites in Low Earth Orbits to reduce the risk during close encounters. With rising numbers of satellites and objects in orbit, satellites experience close encounters more frequently. Especially those satellites without thrusting capabilities face the problem of not being able to performimpulsive evasive manoeuvres. For satellites in Low Earth Orbits, though, perturbing forces due to aerodynamic drag may be used to influence their trajectories, thus offering a possibility to avoid collisions. This work introduces a tool for the analysis of aerodynamic collision avoidance manoeuvres. Current space-weather data are employed to estimate the density the satellite encounters. Achievable in-track separation distances following a variation of the ballistic coefficient through a change in attitude are then derived by evaluating an analytical equation from literature. Considering additional constraints for the attitude, e.g., charging phases, and uncertainties in the used parameters, the influence of a manoeuvre on the conjunction geometry and the collision probability is examined. The university satellite Flying Laptop of the University of Stuttgart is used as an exemplary satellite for analysis, which show the general effectiveness of evasive manoeuvres employing aerodynamic drag. First manoeuvring strategies can be deducted and the influence of parameter uncertainties is assessed.Comment: 18 pages, 13 figure

    Mid-Infrared Spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 2. Determination of the Mean Composition of the Upper Troposphere and Stratosphere

    Full text link
    Mid-infrared spectral observations Uranus acquired with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope are used to determine the abundances of C2H2, C2H6, CH3C2H, C4H2, CO2, and tentatively CH3 on Uranus at the time of the 2007 equinox. For vertically uniform eddy diffusion coefficients in the range 2200-2600 cm2 s-1, photochemical models that reproduce the observed methane emission also predict C2H6 profiles that compare well with emission in the 11.6-12.5 micron wavelength region, where the nu9 band of C2H6 is prominent. Our nominal model with a uniform eddy diffusion coefficient Kzz = 2430 cm2 sec-1 and a CH4 tropopause mole fraction of 1.6x10-5 provides a good fit to other hydrocarbon emission features, such as those of C2H2 and C4H2, but the model profile for CH3C2H must be scaled by a factor of 0.43, suggesting that improvements are needed in the chemical reaction mechanism for C3Hx species. The nominal model is consistent with a CH3D/CH4 ratio of 3.0+-0.2x10-4. From the best-fit scaling of these photochemical-model profiles, we derive column abundances above the 10-mbar level of 4.5+01.1/-0.8 x 10+19 molecule-cm-2 for CH4, 6.2 +- 1.0 x 10+16 molecule-cm-2 for C2H2 (with a value 24% higher from a different longitudinal sampling), 3.1 +- 0.3 x 10+16 molecule-cm-2 for C2H6, 8.6 +- 2.6 x 10+13 molecule-cm-2 for CH3C2H, 1.8 +- 0.3 x 10+13 molecule-cm-2 for C4H2, and 1.7 +- 0.4 x 10+13 molecule-cm-2 for CO2 on Uranus. Our results have implications with respect to the influx rate of exogenic oxygen species and the production rate of stratospheric hazes on Uranus, as well as the C4H2 vapor pressure over C4H2 ice at low temperatures

    The Automatic Real-Time GRB Pipeline of the 2-m Liverpool Telescope

    Get PDF
    The 2-m Liverpool Telescope (LT), owned by Liverpool John Moores University, is located in La Palma (Canary Islands) and operates in fully robotic mode. In 2005, the LT began conducting an automatic GRB follow-up program. On receiving an automatic GRB alert from a Gamma-Ray Observatory (Swift, INTEGRAL, HETE-II, IPN) the LT initiates a special override mode that conducts follow-up observations within 2-3 min of the GRB onset. This follow-up procedure begins with an initial sequence of short (10-s) exposures acquired through an r' band filter. These images are reduced, analyzed and interpreted automatically using pipeline software developed by our team called "LT-TRAP" (Liverpool Telescope Transient Rapid Analysis Pipeline); the automatic detection and successful identification of an unknown and potentially fading optical transient triggers a subsequent multi-color imaging sequence. In the case of a candidate brighter than r'=15, either a polarimetric (from 2006) or a spectroscopic observation (from 2007) will be triggered on the LT. If no candidate is identified, the telescope continues to obtain z', r' and i' band imaging with increasingly longer exposure times. Here we present a detailed description of the LT-TRAP and briefly discuss the illustrative case of the afterglow of GRB 050502a, whose automatic identification by the LT just 3 min after the GRB, led to the acquisition of the first early-time (< 1 hr) multi-color light curve of a GRB afterglow.Comment: PASP, accepted (8 pages, 3 figures

    Noise performance of microwave humidity sounders over their lifetime

    Get PDF
    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT  <  1 K. Due to overlapping life spans of the instruments, these reduced data records still cover without gaps the time since 1994 and may therefore serve as a first step for constructing long time series. Our method for count noise estimation, that has been used in this study, will be used in the data processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO)

    ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster

    Get PDF
    We present the results of the first extensive mid-infrared (IR) imaging survey of the rho Ophiuchi embedded cluster, performed with the ISOCAM camera on board the ISO satellite. The main molecular cloud L1688, as well as L1689N and L1689S, have been completely surveyed for point sources at 6.7 and 14.3 micron. A total of 425 sources are detected including 16 Class I, 123 Class II, and 77 Class III young stellar objects (YSOs). Essentially all of the mid-IR sources coincide with near-IR sources, but a large proportion of them are recognized for the first time as YSOs. Our dual-wavelength survey allows us to identify essentially all the YSOs with IR excess in the embedded cluster down to Fnu ~ 10 - 15 mJy. It more than doubles the known population of Class II YSOs and represents the most complete census to date of newly formed stars in the rho Ophiuchi central region. The stellar luminosity function of the complete sample of Class II YSOs is derived with a good accuracy down to L= 0.03 Lsun. A modeling of this lumino- sity function, using available pre-main sequence tracks and plausible star for- mation histories, allows us to derive the mass distribution of the Class II YSOs which arguably reflects the IMF of the embedded cluster. We estimate that the IMF in rho Ophiuchi is well described by a two-component power law with a low- mass index of -0.35+/-0.25, a high-mass index of -1.7 (to be compared with the Salpeter value of -1.35), and a break occurring at M = 0.55+/-0.25 Msun. This IMF is flat with no evidence for a low-mass cutoff down to at least 0.06 Msun.Comment: A&A Document Class -- version 5.01, 27 pages, 10 figures v2: typos added including few changes in source numberin

    ISOCAM observations of the L1551 star formation region

    Get PDF
    The results of a deep mid-IR ISOCAM survey of the L1551 dark molecular cloud are presented. The aim of this survey is a search for new YSO (Young Stellar Object) candidates, using two broad-band filters centred at 6.7 and 14.3 micron. Although two regions close to the centre of L1551 had to be avoided due to saturation problems, 96 sources were detected in total (76 sources at 6.7 micron and 44 sources at 14.3 micron). Using the 24 sources detected in both filters, 14 were found to have intrinsic mid-IR excess at 14.3 micron and were therefore classified as YSO candidates. Using additional observations in B, V, I, J, H and K obtained from the ground, most candidates detected at these wavelengths were confirmed to have mid-IR excess at 6.7 micron as well, and three additional YSO candidates were found. Prior to this survey only three YSOs were known in the observed region (avoiding L1551 IRS5/NE and HL/XZ Tau). This survey reveals 15 new YSO candidates, although several of these are uncertain due to their extended nature either in the mid-IR or in the optical/near-IR observations. Two of the sources with mid-IR excess are previously known YSOs, one is a brown dwarf MHO 5 and the other is the well known T Tauri star HH30, consisting of an outflow and an optically thick disk seen edge on.Comment: 14 Pages, 8 Figure

    An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing

    Full text link
    (abridged) The discovery of OGLE 2005-BLG-390Lb, the first cool rocky/icy exoplanet, impressively demonstrated the sensitivity of the microlensing technique to extra-solar planets below 10 M_earth. A planet of 1 M_earth in the same spot would have provided a detectable deviation with an amplitude of ~ 3 % and a duration of ~ 12 h. An early detection of a deviation could trigger higher-cadence sampling which would have allowed the discovery of an Earth-mass planet in this case. Here, we describe the implementation of an automated anomaly detector, embedded into the eSTAR system, that profits from immediate feedback provided by the robotic telescopes that form the RoboNet-1.0 network. It went into operation for the 2007 microlensing observing season. As part of our discussion about an optimal strategy for planet detection, we shed some new light on whether concentrating on highly-magnified events is promising and planets in the 'resonant' angular separation equal to the angular Einstein radius are revealed most easily. Given that sub-Neptune mass planets can be considered being common around the host stars probed by microlensing (preferentially M- and K-dwarfs), the higher number of events that can be monitored with a network of 2m telescopes and the increased detection efficiency for planets below 5 M_earth arising from an optimized strategy gives a common effort of current microlensing campaigns a fair chance to detect an Earth-mass planet (from the ground) ahead of the COROT or Kepler missions. The detection limit of gravitational microlensing extends even below 0.1 M_earth, but such planets are not very likely to be detected from current campaigns. However, these will be within the reach of high-cadence monitoring with a network of wide-field telescopes or a space-based telescope.Comment: 13 pages, 4 figures and 1 table. Accepted for publication in MNRA

    Inferring statistics of planet populations by means of automated microlensing searches

    Get PDF
    (abridged) The study of other worlds is key to understanding our own, and not only provides clues to the origin of our civilization, but also looks into its future. Rather than in identifying nearby systems and learning about their individual properties, the main value of the technique of gravitational microlensing is in obtaining the statistics of planetary populations within the Milky Way and beyond. Only the complementarity of different techniques currently employed promises to yield a complete picture of planet formation that has sufficient predictive power to let us understand how habitable worlds like ours evolve, and how abundant such systems are in the Universe. A cooperative three-step strategy of survey, follow-up, and anomaly monitoring of microlensing targets, realized by means of an automated expert system and a network of ground-based telescopes is ready right now to be used to obtain a first census of cool planets with masses reaching even below that of Earth orbiting K and M dwarfs in two distinct stellar populations, namely the Galactic bulge and disk. The hunt for extra-solar planets acts as a principal science driver for time-domain astronomy with robotic-telescope networks adopting fully-automated strategies. Several initiatives, both into facilities as well as into advanced software and strategies, are supposed to see the capabilities of gravitational microlensing programmes step-wise increasing over the next 10 years. New opportunities will show up with high-precision astrometry becoming available and studying the abundance of planets around stars in neighbouring galaxies becoming possible. Finally, we should not miss out on sharing the vision with the general public, and make its realization to profit not only the scientists but all the wider society.Comment: 10 pages in PDF format. White paper submitted to ESA's Exo-Planet Roadmap Advisory Team (EPR-AT); typos corrected. The embedded figures are available from the author on request. See also "Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing" by J.P. Beaulieu, E. Kerins, S. Mao et al. (arXiv:0808.0005
    corecore